top of page

Peer reviewed paper

  1. Akamatsu, Y., Kuwatani, T., and Katayama, I. 2024. Spatial heterogeneity of pore structure in the crustal section of the Samail ophiolite: implications for high Vp/Vs anomalies in subducting oceanic crust. Geophysical Research Letter, doi.org/10.1029/2023GL106943.

  2. Tanimoto, K., Akamatsu, Y., and Katayama, I. 2024. Electrical resistivity, seismic velocity, and porosity of crustal rocks from the Oman ophiolite under brine-saturated ocean floor conditions. Lithos, doi.org/10.1016/j.lithos.2024.107500

  3. Okazaki, Y., Azuma, S., Katayama, I., Sekine, Y., and Sarutani, T. 2024. Low-temperature friction experiments on ice–salt mixtures: Implications for the strength of ice plate boundaries on Europa. Icarus, doi.org/10.1016/j.icarus.2024.115961

  4. (4) Katayama, I., Okamoto, A., and Okazaki, K. 2023. Role of mantle carbonation in the trench outer-rise region in the global carbon cycle. Island Arc, doi.org/10.1111/iar.12499.

  5. (5) Sueyoshi, K., Sawayama, K., and Katayama, I. 2023. Permeability evolution in fine-grained Aji granite during triaxial compression experiments. Geophysical Prospecting, doi.org/10.1111/1365-2478.13412.

  6. Akamatsu, Y., Nagase, K., Abe, N., Okazaki, K., Hatakeyama, K., and Katayama, I. 2023. Cross-property relationship between electrical resistivity and elastic wave velocity of crustal rocks from the Oman Drilling Project Hole GT3A: Implications for in situ geophysical properties of oceanic crust. Journal of Geophysical Research, 128, e2022JB026130. doi.org/10.1029/2022JB026130

  7. Akamatsu, Y., Okazaki, K., Michibayashi, K., and Katayama, I. 2023. Paleo-permeability structure of the crustal section of the Samail ophiolite based on automated detection of veins in X-ray CT core images from the Oman Drilling Project. Geochemistry, Geophysics, Geosystems, 24, e2022GC010792. doi.org/10.1029/2022GC010792

  8. Sakuma, H., Katayama, I., Kawai, K. and Tamura, K. 2023. A small amount of water reduces the friction of the preferentially oriented montmorillonite gouge. Applied Clay Science, 243, doi.org/10.1016/j.clay.2023.107058

  9. Katayama, I., Aoi, Y., Tanimoto, K., Akamatsu, Y., and Sawayama, K. 2023. Simultaneous electrical resistivity and elastic wave velocity measurements during triaxial deformation of granite under brine-saturated conditions. Earth Planet and Space, doi.org/10.1186/s40623-023-01809-4.

  10. Sueyoshi, K., Kitamura, M., Lei, X., and Katayama, I. 2023. Identification of fracturing behavior in thermally cracked granite using the frequency spectral characteristics of acoustic emission. Journal of Mineralogical and Petrological Sciences, 118, doi.org/10.2465/jmps.221014.

  11. Jayawickrama, E. G., and Katayama, I. 2023. Elastic properties of thermally treated diabase and peridotite: Implications toward the elastic properties of oceanic lithosphere. Journal of Geophysical Research, 128, e2022JB026143. doi.org/10.1029/2022JB026143

  12. Katayama, I., Yoshida, M., and Hirauchi, K. 2022. Effects of rheological stratification and elasticity of lithosphere on subduction initiation. Frontiers in Earth Science, doi.org/10.3389/feart.2022.988320

  13. Nagase, K., Hatakeyama, K., Okazaki, K., Akamatsu, Y., Abe, N., Michibayashi, K., and Katayama, I. (corresponding author) 2022. Simultaneous Measurements of Elastic Wave Velocity and Porosity of Epidosites Collected From the Oman Ophiolite: Implication for Low VP/VS Anomaly in the Oceanic Crust. Geophysical Research Letters, 49, e2022GL098234. doi.org/10.1029/2022GL098234

  14. Miyamoto, T., Hirono, T., Yokoyama, Y., Kaneki, S., Yamamoto, Y., Ishikawa, T., Tsuchiyama, A., Katayama, I., Yabe, Y., Ziegler, M., Durrheim, R. J., and Ogasawara11 H. 2022. Characteristics of Fault Rocks within the Aftershock Cloud of the 2014 Orkney Earthquake (M5.5) Beneath the Moab Khotsong Gold Mine, South Africa. Geophysical Research Letters, 49, doi.org/10.1029/2022GL098745

  15. Fujioka, R., Katayama, I. (corresponding author), Kitamura, M., Okuda, H., and Hirose, T. 2022. Depth profile of frictional properties in the inner Nankai accretionary prism using cuttings from IODP Site C0002. Progress in Earth and Planetary Science, 9, 31. doi.org/10.1186/s40645-022-00488-1

  16. Hatakeyama, K., Katayama, I., Abe, N., Okazaki, K., Michibayashi, and The Oman Drilling Project Science Party. 2021. Effects of alteration and cracks on the seismic velocity structure of oceanic lithosphere inferred from ultrasonic measurements of mafic and ultramafic samples collected by the Oman Drilling Project. Journal of Geophysical Research, doi.org/10.1029/2021JB021923

  17. Lai, S.T., Fuji, N., Katayama, I., Bonilla, L.F., and Capdeville, Y. 2021. Rock deformation monitoring using Monte Carlo waveform inversion. Journal of Geophysical Research, doi.org/10.1029/2021JB021873.

  18. Katayama, I., Abe, N., Hatakeyama, K., Akamatsu, Y., Okazaki, K., Michibayashi, K, Godard, M., Kelemen, P., and The Oman Drilling Project Phase 2 Science Party. 2021. Crack geometry of serpentinized peridotites inferred from onboard ultrasonic data from the Oman Drilling Project. Tectonophysics, doi.org/10.1016/j.tecto.2021.228978

  19. Akamatsu, Y., Nagase, K., Katayama, I. 2021. Non-dilatant brittle deformation and strength reduction of olivine gabbro due to hydration. Minerals, 11, 694. doi.org/10.3390/min11070694

  20. Akamatsu, Y., Katayama, I., Tonegawa T. 2021. Changes in elastic wave velocity during brittle deformation of gabbro and peridotite: Implications for oceanic Moho reflectivity. Earth and Planetary Science Letters, doi.org/10.1016/j.epsl.2021.117036

  21. 森下知晃, 藤江 剛, 平内健一, 片山郁夫, 纐纈佑衣, 黒田潤一郎, 岡本 敦, 小野重明, 道林 克禎, 諸野祐樹, 山本伸次(2021)マントル掘削でのみ解明される地球科学問題:生命惑星海洋プレートの今を理解する,地学雑誌, 130, 483-506.

  22. Katayama, I. 2021. Strength models of the terrestrial planets and implications for their lithospheric structure and evolution. Progress in Earth and Planetary Science, 8, doi.10.1186/s40645-020-00388-2.

  23. Umino, S., Moore, G.F., Boston, B., Coggon, R., Crispini, L., D’Hondt, S., Garcia, M.O, Hanyu, T., Klein, F., Seama, N., Teagle, D.A.H., Tominaga, M., Yamashita, M., Harris, M., Ildefonse, B., Katayama, I., Kusano, Y., Suzuki, Y., Trembath-Reichert, E., Yamada, Y., Abe, N., Xiao, N., and Inagaki, F. 2021. Workshop report: Exploring deep oceanic crust off Hawai‘i. Scientific Drilling, 29, 69–82, doi.org/10.5194/sd-29-69-2021

  24. Okuda, H., Kawai, K., Sakuma, H. and Katayama, I. 2021. Effect of normal stress on the frictional behavior of brucite: Application to slow earthquakes at the subduction plate interface in the mantle wedge. Solid Earth, 12, 171-186. doi.org/10.5194/se-12-171-2021

  25. Sueyoshi, K., Yokoyama, T. and Katayama, I. 2020. Experimental measurement of the transport flow path aperture in thermally cracked granite and the relationship between pore structure and permeability. Geofluids, doi.org/10.1155/2020/8818293.

  26. 長瀨薫平,片山郁夫,横山正,畠山航平,赤松祐哉,岡崎啓史,阿部なつ江,道林克禎(2020)オマーンオフィオライト陸上掘削試料を用いたハードロック掘削における空隙率測定法の再検討,地質学雑誌, 126, 713-717. doi:10.5575/geosoc.2020.0043.

  27. Hirauchi, K. Katayama, I., Kouketsu, Y. 2020. Semi-brittle deformation of antigorite serpentinite under forearc mantle wedge conditions. Journal of Structural Geology, 140, doi.org/10.1016/j.jsg.2020.104151

  28. Katayama, I., Abe, N., Hatakeyama, K., Akamatsu, Y., Okazaki, K., Ulven, O., Hong, G., Zhu, W., Cordonnier, B., Michibayashi, K, Godard, M., Kelemen, P., and The Oman Drilling Project Phase 2 Science Party. 2020. Permeability profiles across the crust-mantle sections in the Oman Drilling Project inferred from dry and wet resistivity data. Journal of Geophysical Research, doi.org/10.1029/2019JB018698.

  29. Kelemen, P.B., Matter, J.M., Teagle, D.A.H., Coggon, J.A., and the Oman Drilling Project Science Team, 2020. Proceedings of the Oman Drilling Project: College Station, TX (International Ocean Discovery Program). doi.org/10.14379/OmanDP.proc.2020

  30. Otsubo, M., Katayama, I., Miyakawa, A., and Sagiya, T. 2020. Inelastic behavior and mechanical strength of the shallow upper crust controlled by layer-parallel slip in the high-strain zone of the Niigata region, Japan. Earth, Planets and Space, 72, doi.org/10.1186/s40623-020-01154-w.

  31. Hatakeyama, K., and Katayama, I. 2020. Pore fluid effects on elastic wave velocities of serpentinite and implications for estimates of serpentinization in oceanic lithosphere. Tectonophysics, 775, doi.org/10.1016/j.tecto.2019.228309.

  32. Katayama, I. Matsuoka Y., and Azuma, S. 2019. Sensitivity of elastic thickness to water in the Martian lithosphere. Progress in Earth and Planetary Science, 6, doi.org/10.1186/s40645-019-0298-6.

  33. Akamatsu Y., Hatakeyama K., and Katayama, I. 2019. Contrasting dilatant behaviors of mafic and ultramafic rocks based on triaxial deformation experiments. Journal of Mineralogical and Petrological Science, 114, 79–86, doi.org/10.2465/jmps.181120.

  34. Otsubo, M., Miyakawa A., Katayama, I., and Okazaki, K. 2019. An inhomogeneous across-slab conduit controlled by intraslab stress heterogeneity in the Nankai subduction zone. Scientific Reports, 9, 994, doi.org/10.1038/s41598-018-38142-w

  35. Zaima, K., and Katayama, I. 2018. Evolution of elastic velocities and amplitudes during triaxial deformation of Aji granite under dry and water-saturated conditions. Journal of Geophysical Research, 123, 9601–9614, doi:10.1029/2018JB016377.

  36. Sakuma, H., Kawai, K., Katayama, I. and Suehara, S. 2018. What is the origin of macroscopic friction? Science Advances, 4, doi:10.1126/sciadv.aav2268.

  37. Kawaguchi, K., and Katayama, I. 2018. Evolution of permeability and fluid pathway in the uppermost oceanic crust inferred from experimental measurements on basalt cores. Journal of Mineralogical and Petrological Science, 113, 268–272, doi.org/10.2465/jmps.180411.

  38. Katayama, I., Nicolas, A. and Schubnel, A. 2018. Fluid-induced fracturing of initially damaged granites triggered by pore pressure buildup. Geophysical Research Letters, 45, 7488–7495, doi.org/10.1029/2018GL077815.

  39. Tetsuka, H., Katayama, I., Sakuma, H. and Tamura, K. 2018. Effects of humidity and interlayer cations on the frictional strength of montmorillonite. Earth, Planet and Space, 70, doi.org/10.1186/s40623-018-0829-1.

  40. Hatakeyama, K., Katayama, I., Hirauchi, K. and Michibayashi, K. 2017. Mantle hydration along outer-rise faults inferred from serpentinite permeability. Scientific Reports, 7, doi:10.1038/s41598-017-14309.

  41. 片山郁夫,東真太郎(2017)岩石の変形特性に対する水の効果と大陸・海洋プレートのレオロジー構造,地質学雑誌,123, 365-377.

  42. Azuma, S. and Katayama, I. 2017. Evolution of rheological structure of Mars. Earth, Planet and Space, 29, doi10.1186/s40623-016-0593-z.

  43. 澤山和貴,片山郁夫(2016)三軸圧縮試験における庵治花崗岩のひずみ挙動および変形特性に対する封圧と間隙水圧の効果,地質学雑誌,122, 603-615.

  44. 片山郁夫(2016)沈み込み帯での水の循環様式,火山, 61, 69-77.

  45. Katayama, I., Kubo, T., Sakuma, H. and Kawai, K. 2015. Can clay minerals account for the behavior of non-asperity on the subducting plate interface? Progress in Earth and Planetary Science, 2, doi:10.1186/s40645-015-0063-4.

  46. Kawai, K., Sakuma, H., Katayama, I. and Tamura, K. 2015. Frictional characteristics of single and polycrystalline muscovite and influence of fluid chemistry. Journal of Geophysical Research, 120, doi:10.1002/2015JB012286.

  47. 東真太郎,片山郁夫(2015)月内部のレオロジー構造から考察する月震の発生メカニズム,遊星人, 24, 318-325.

  48. 平内健一,片山郁夫(2015)蛇紋岩の力学的性質とそのテクトニックな意義,地学雑誌, 124,371-396.

  49. Kubo, T. and Katayama, I. 2015. Effect of temperature on the frictional behavior of smectite and illite. Journal of Mineralogical and Petrological Science, 110, 293-299.

  50. Okazaki, K. and Katayama, I. 2015. Slow stick-slip of antigorite serpentinite under hydrothermal conditions as a possible mechanism for slow earthquakes. Geophysical Research Letter, 42, 1099-1104, doi:10.1002/ 2014GL062735.

  51. Kim, D., Katayama, I., Wallis, S., Michibayashi, K., Miyake, A., Seto, Y. and Azuma, S. 2015. Deformation microstructures of glaucophane and lawsonite in experimentally deformed blueschists: Implications for intermediate-depth intraplate earthquakes. Journal of Geophysical Research, 120, 1229-1242, doi:10.1002/2014JB011528.

  52. 原田裕也,片山郁夫,河野義生(2014)蛇紋岩の弾性波速度に対する間隙水圧の影響,岩石鉱物科学, 43, 161-173, doi:10.2465/gkk.130918

  53. Azuma, S., Katayama, I. and Nakakuki, T. 2014. Rheological decoupling at the Moho and implication to Venusian tectonics. Scientific Reports, 4, doi:10.1038/srep04403.

  54. Katayama, I., Iwata, M., Okazaki, K. and Hirauchi, K. 2013. Slow earthquakes associated with fault healing on a serpentinized plate interface. Scientific Reports, 3, doi:10.1038/srep01784.

  55. Hirauchi, K. and Katayama, I. 2013. Rheological contrast between serpentine species and implications for slab–mantle wedge decoupling. Tectonophysics, 608, 545-551.

  56. Kim, D., Katayama, I., Michibayashi, K. and Tsujimori, T. 2013. Deformation fabrics of natural blueschists and implications for seismic anisotropy in subducting oceanic crust. Physics of the Earth and Planetary Interiors, 222, 8-21.

  57. Okazaki, K., Katayama, I. and Noda, H. 2013. Shear-induced permeability anisotropy of simulated serpentine gouges produced by triaxial deformation experiments. Geophysical Research Letter, 40, 1–5.

  58. Sawai, M., Katayama, I., Hamada, A., Maeda, M. and Nakashima, S. 2013. Dehydration kinetics of antigorite using in situ high-temperature infrared microspectroscopy. Physics and Chemistry of Minerals, 40, 319-330.

  59. Okazaki, K., Katayama, I. and Takahashi, M. 2013. Effect of pore fluid pressure on the frictional strength of antigorite serpentinite. Tectonophysics, 583, 49-53.

  60. Kim, D., Katayama, I., Michibayashi, K. and Tsujimori, T. 2013. Rheological contrast between glaucophane and lawsonite in naturally deformed blueschist from Diablo Range, California. Island Arc, 22, 63-73.

  61. Yamamoto, S., Komiya, T., Yamamoto, H., Kaneko, Y., Terabayashi, M., Katayama, I., Iizuka, T., Maruyama, S., Yang, J.S., Kon, Y., and Hrata, T. 2013. Recycled crustal zircons from podiform chromitites in the Luobusa ophiolite, southern Tibet. Island Arc, 22, 89-103.

  62. Katayama, I. Terada, T., Okazaki, K. and Tanikawa, W. 2012. Episodic tremor and slow slip potentially linked to permeability contrasts at the Moho. Nature Geoscience, 5, 731-734.

  63. Kawano, S., Yoshino, T. and Katayama, I. 2012. Electrical conductivity of magnetite-bearing serpentinite during shear deformation. Geophysical Research Letters, 39, L20313.

  64. Katayama, I. and Korenaga, J. 2011. Is the African cratonic lithosphere dry or wet? Special volume of Geological Society of America, Volcanism and evolution of the African lithosphere, p. 249-256.

  65. Kawano, S., Katayama, I. and Okazaki, K. 2011. Permeability anisotropy of serpentinite and fluid pathways in a subduction zone. Geology, 39, 939-942.

  66. Guo, X., Yoshino, T., and Katayama, I. 2011. Electrical conductivity anisotropy of deformed talc rocks and serpentinites at 3GPa. Physics of Earth and Planetary Interiors, 188, 69-81.

  67. Katayama, I., Kurosaki, I. and Hirauchi, K. 2010. Low silica activity for hydrogen generation during serpentinization: an example of natural serpentinites in the Mineoka ophiolite complex, central Japan. Earth and Planetary Science Letters, 298, 199-204.

  68. Katayama, I., Michibayashi, K., Terao, R., Ando, J. and Komiya, T. 2010. Water content of the mantle xenoliths from Kimberley and implications for explaining textural variations in cratonic roots. Geological Journal, 46, 173-182.

  69. 片山郁夫, 平内健一,中島淳一(2010)日本列島下での沈み込みプロセスの多様性,地学雑誌, 119, 205-223.

  70. Hirauchi, K., Michibayashi, K., Ueda, H. and Katayama, I. 2010. Spatial variations in antigorite fabrics across a serpentinite subduction channel: Insights from the Ohmachi seamount, Izu-Bonin frontal arc. Earth and Planetary Science Letters, 299, 196-206.

  71. Hirauchi, K., Katayama, I., Uehara, S., Miyahara, M. and Takai, Y. 2010. Inhibition of subduction thrust earthquakes by low-temperature plastic flow in serpentine. Earth and Planetary Science Letters, 295, 349-357.

  72. Azuma, S., Katayama, I., Hirauchi, K. and Yamashita, S. 2010. Strength contrast between plagioclase and olivine at water-rich Moho depths. Journal of Mineralogical and Petrological Sciences, 105, 286-290.

  73. Maruyama, S., Masago, H., Katayama, I., Iwase, M., Toriumi, M., Omori, S. and Aoki, K. 2010. A new perspective on metamorphism and metamorphic belts. Gondwana Research, 18, 106-137.

  74. Katayama, I., Hirauchi, K., Michibayashi, K. and Ando, J. 2009. Trench-parallel anisotropy produced by serpentine deformation in the hydrated mantle wedge. Nature, 461, 1114-1117.

  75. Katayama, I. and Maruyama, S. 2009. Inclusion study in zircon from ultrahigh-pressure metamorphic rocks in the Kokchetav massif: an excellent tracer of metamorphic history. Journal of the Geological Society, London, 166, 783-796.

  76. Katayama, I. 2009. Thin anisotropic layer in the mantle wedge beneath northeast Japan. Geology, 37, 211-214.

  77. Katayama, I., Suyama, Y., Ando, J. and Komiya, T. 2009. Mineral chemistry and P-T condition of granular and sheared peridotite xenoliths from Kimberley, South Africa: Origin of the textural variation in the cratonic mantle. Lithos, 109, 333-340.

  78. Tajima, F., Katayama, I. and Nakagawa, T. 2009. Variable seismic structure near the 660 km discontinuity associated with stagnant slabs, geochemical implications. Physics of Earth and Planetary Interior, 172, 183-198.

  79. Katayama, I. and Karato, S. 2008. Low-temperature, high-stress deformation of olivine under water-saturated condition. Physics of Earth and Planetary Interior, 168, 125-133.

  80. Katayama, I. and Karato, S. 2008. Effects of water and iron content on the rheological contrast between garnet and olivine. Physics of Earth and Planetary Interior, 166, 57-66.

  81. Katayama, I., Komiya, T. and Toriumi, M. 2008. Annealing time-scale of the cratonic lithosphere of Southern Africa inferred from the shape of inclusion minerals. International Geology Review, 50, 84-88.

  82. Karato, S., Jung, H., Katayama, I. and Skemer, P. 2008. Geodynamic significance of seismic anisotropy of the upper mantle: New insights from laboratory studies. Annual Review of Earth and Planetary Sciences, 36, 59-95.

  83. Kneller, E.A., van Keken, P.E., Katayama, I. and Karato, S. 2007. Stress, strain, and B-type olivine fabric in the fore-arc mantle: sensitivity tests using high-resolution steady state subduction zone models. Journal of Geophysical Research, 112, B04406.

  84. Ota, T., Utsunomiya, A., Uchio, Y., Isozaki, Y., Buslov, M., Ishikawa, A., Maruyama, S., Kitajima, K., Kaneko, Y., Yamamoto, H., and Katayama, I., 2007. Geology of the Gorny Altai subduction-accretion complex, southern Siberia: Tectonic evolution of an Ediacaran-Cambrian intra-oceanic arc-trench system. Journal of Asian Earth Sciences, 30, 666-695.

  85. Yamamoto, H., Yamamoto, S., Kaneko, Y., Terabayashi, M., Komiya, T., Katayama, I., and Iizuka, T., 2007. Imbricate structure of the Luobusa Ophiolite and surrounding rock units, southern Tibet. Journal of Asian Earth Sciences, 29, 296-304.

  86. Iizuka, T., Komiya, T., Ueno, Y., Katayama, I., Uehara, Y., Maruyama, S. Hirata, T., Johnson, S.P., and Dunkley, D., 2007. Geology and zircon geochronology of the Acasta Gneiss Complex, northwestern Canada: new constraints on its tectonothermal history. Precambrian Research, 153, 179-208.

  87. Katayama, I. and Karato, S. 2006. Effect of temperature on the B- to C-type olivine fabric transition and implication for flow pattern in the subduction zone. Physics of Earth and Planetary Interior, 157, 33-45.

  88. Katayama, I., Nakashima, S. and Yurimoto, H. 2006. Water content in natural eclogite and its implication for water transport into the deep upper mantle. Lithos, 86, 245-259.

  89. Okamoto, K., Katayama, I., Maruyama, S. and Liou, J.G. 2006. Zircon-inclusion mineralogy of a diamond-grade eclogite from the Kokchetav massif, northern Kazakhstan. International Geology Review, 48, 882-891.

  90. Skemer, P., Katayama, I., and Karato, S. 2006. Deformation fabrics of the Cima di Gagone peridotite massif, central Alps, Switzerland: Evidence of deformation under water-rich conditions at low temperatures. Contribution to Mineralogy and Petrology, 152, 43-51.

  91. Jung, H., Katayama, I., Jiang, Z., Hiraga, T., and Karato, S. 2006. Effect of water and stress on the lattice preferred orientation of olivine. Tectonophysics, 421, 1-22.

  92. Katayama, I., Karato, S. and Brandon, M. 2005. Evidence of high water content in the deep upper mantle inferred from deformation microstructures. Geology, 33, 613-616.

  93. Skemer, P., Katayama, I., Jiang, Z. and Karato, S. 2005. The misorientation index Part I: development of a new method for calculating the strength of lattice-preferred orientation. Tectonophysics, 411, 157-167.

  94. Liou, J.G., Tsujimori, T., Zhang, R.Y., Katayama, I. and Maruyama, S. 2005. High-Pressure Metamorphism and Continent Subduction/Collision. p. 285-313, in Metamorphism and Crustal Evolution, ed. H. Thomas, Atlantic Publishers & Distributors, New Delhi, India.

  95. Terabayashi, M., Okamoto, K., Yamamoto, H., Kaneko, Y., Ota, T., Maruyama, S., Katayama, I., Komiya, T., Ishikawa, A., Anma, R., Ozawa, H., Windley, B.F., and Liou, J.G., 2005. Accretionary complex origin of the mafic-ultramafic bodies of the Sanbagawa belt, central Shikoku, Japan. International Geology Review, 47, 1058-1073.

  96. Iizuka, T., Hirata, T., Komiya, T., Rino, S., Katayama, I., Motoki, A. and Maruyama, S., 2005. U-Pb and Lu-Hf isotope systematics of zircons from the Mississippi river sand: implications for reworking and growth of continental crust. Geology, 33, 485-488.

  97. Buchana, P.C., Noguchi, T., Bogard, D.D., Ebihara, M. and Katayama, I., 2005. Glass veins in the unequilibrated eucrite Yamato 82202. Geochimica et Cosmochimica Acta, 69, 1883-1898.

  98. Katayama, I., Jung, K. and Karato, S. 2004. New type of olivine fabric from deformation experiments at modest water content and low stress. Geology, 32, 1045-1048.

  99. 片山郁夫(2004)超高圧変成作用のジルコンインクルージョン法による温度圧力時間経路,地学雑誌, 113, 678-687.

  100. Rino, S., Komiya, T., Windley, B.F., Katayama, I., Motoki, A. and Hirata, T. 2004. Major episodic increases of continental crustal growth determined from zircon ages of river sands; implications for mantle overturns in the Early Precambrian. Physics of the Earth and Planetary Interiors, 146, 369-394.

  101. Okamoto, K., Shinjo, H., Katayama, I., Terada, K., Sano, Y. and Johnson, S. 2004. SHRIMP U-Pb zircon dating of quartz-bearing eclogite from the Sanbagawa Belt, south-west Japan: implications for metamorphic evolution of subducted protolith. Tera Nova. 16, 81-89.

  102. Ota, T., Terabayashi, M. and Katayama, I., 2004. Thermobaric structure and metamorphic evolution of the Iratsu eclogite body in the Sanbagawa belt, central Shikoku, Japan. Lithos. 73, 95-126.

  103. Ono, S., Tange, Y., Katayama, I. and Kikegawa, T. 2004. Equations of state of ZrSiO4 phases in the upper mantle. American Mineralogist, 89, 185-188.

  104. Liou, J.G., Tsujimori, T., Zhang, R.Y., Katayama, I. and Maruyama, S. 2004. Global UHP metamorphism and continental subduction/collision: The Himalayan model. International Geological Review, 46, 1-27.

  105. 丸山茂徳,真砂英樹,片山郁夫,岩瀬康幸,鳥海光弘(2004)広域変成作用論の革新的変貌,地学雑誌, 113, 727-768.

  106. Katayama, I., Hirose, K., Yurimoto, H. and Nakashima, S. 2003. Water solubility in majoritic garnet in subducting oceanic crust. Geophysical Research Letter, 30, doi:10.1029/2003GL018127.

  107. Katayama, I., Muko, A., Iizuka, T., Maruyama, S., Terada, K., Tsutsumi, S., Sano, Y., Zhang, R.Y. and Liou, J.G. 2003. Dating of zircon from Ti-clinohumite-bearing garnet peridotite: Implication for timing of mantle metasomatism. Geology, 31, 713-716.

  108. Katayama, I. and Nakashima, S. 2003. Hydroxyl in clinopyroxene from the deep subducted crust: Evidences for H2O transport into the mantle. American Mineralogist, 88, 229-234.

  109. Kaneko, Y., Katayama, I., Yamamoto, H., Misawa, K., Ishikawa, M., Rehman, H. U., Kausar, A. B. and Shiraishi, K. 2003. Timing of Himalayan ultrahigh-pressure metamorphism: sinking rate and subduction angle of the Indian continental crust beneath Asia. Journal of Metamorphic Geology, 21, 589-599.

  110. Yang, J.S., Wooden, J.L., Wu, C.L., Liu, F.L., Xu, Z. Q., Shi, R.D., Katayama, I., Liou, J.G. and Maruyama, S. 2003. SHRIMP U-Pb dating of coesite-bearing zircons from the ultrahigh-pressure metamorphic rocks, Sulu terrane, east China Journal of Metamorphic Geology, 21, 551-560.

  111. Liu, F., Zhang, Z., Katayama, I., Xu, Z. and Maruyama, S. 2003, UHP metamorphic records hidden in zircons from amphibolites in Sulu terrane, eastern China. The Island Arc, 12, 256-267.

  112. Katayama, I., Ohta, M. and Ogasawara, Y., 2002. Mineral inclusions in zircon from diamond-bearing marble in the Kokchetav massif, northern Kazakhstan. European Journal of Mineralogy, 14, 1103-1108.

  113. Liu, F., Xu, Z., Liou, J.G., Katayama, I., Masago, H., Maruyama, S. and Yang, J., 2002. Ultrahigh-pressure mineral inclusions in zircon from gneissic core samples of the Chinese Continental Scientific Drilling Site in eastern China. European Journal of Mineralogy, 14, 499-512.

  114. Liou, J.G., Zhang, R.Y., Katayama, I., Maruyama, S. and Ernst, G., 2002. Petrotectonic characterization of the Kokchetav massif and the Dabie-Sulu terrane ultrahigh-pressure metamorphism in the so-called P-T forbidden zone. Western Pacific Earth Sciences, 2, 119-148.

  115. Katayama, I., Maruyama, S., Parkinson, C.D., Terada, K. and Sano, Y., 2001. Ion micro-probe U-Pb zircon geochronology of peak and retrograde stages of ultrahigh-pressure metamorphic rocks from the Kokchetav massif, Kazakhstan. Earth and Planetary Sciences Letter, 188, 185-198.

  116. Liu, F., Xu, Z., Katayama, I., Yang, J., Maruyama, S. and Liou, J.G., 2001. Mineral inclusions in zircon of para- and ortho-gneisses from pre-pilot drillhole CCSD-PP1, Chinese Continental Scientific Drilling Project. Lithos, 59, 199-215.

  117. Liu, F., Xu, Z., Yang, J., Maruyama, S., Liou, J.G., Katayama, I. and Masago, H., 2001. Mineral inclusions in zircon and UHP metamorphic evidence from paragneiss and orthogneisss of pre-pilot drillhole CCSD-PP2 in north Jiangsu Province, China. Chinese Science Bulletin, 46, 1037-1042

  118. Katayama, I., Parkinson, C.D., Okamoto, K., Nakajima, Y. and Maruyama, S., 2000. Supersilicic clinopyroxene and silica exsolution in UHPM eclogite and pelitic gneiss from the Kokchetav massif, Kazakhstan. American Mineralogist, 85, 1368-1374.

  119. Katayama, I., Zayachkovsky, A.A. and Maruyama, S., 2000. Progressive P-T records from zircon in Kokchetav UHP-HP rocks, northern Kazakhstan. The Island Arc, 9, 417-428.

  120. Ye, K., Yao, Y., Katayama, I., Cong, B., Wang, Q. and Maruyama, S. 2000. Large areal extent of ultrahigh-pressure metamorphism in the Sulu ultrahigh-pressure terrane of East China: new implications from coesite and omphacite inclusions in zircon of granitic gneiss. Lithos, 52, 157-164.

  121. Ogasawara, Y., Ohta, M., Fukasawa, K., Katayama, I. and Maruyama, S., 2000. Diamond-bearing and diamond-free metacarbonate rocks from Kumdy-Kol in the Kokchetav massif, northern Kazakhstan. The Island Arc, 9, 400-416.

  122. Kaneko, Y., Maruyama, S., Terabayashi, M., Yamamoto, H., Ishikawa, M., Anma, R., Parkinson, C.D., Ohta, T., Nakajima, Y., Katayama, I., Yamamoto, J. and Yamauchi, K. 2000. Geology of the Kokchetav UHP-HP metamorphic belt, northern Kazakhstan. The Island Arc, 9, 264-283.

  123. Parkinson, C.D. and Katayama, I., 1999. Present-day ultrahigh-pressure conditions of coesite inclusions in zircon and garnet: Evidence from laser Raman microspectroscopy. Geology, 27, 979-982.

 

Other papers

  1. 片山郁夫(2016)粘土鉱物の摩擦特性と沈み込みプレート境界地震の関連性,粘土科学, 3, 114-119.

  2. 片山郁夫,東真太郎,武藤潤(2012)海洋モホ面でのレオロジー的不連続性,月刊地球, 34, 217-220.

  3. 片山郁夫(2010)沈み込み帯での蛇紋岩の存在とその役割、月刊地球, 32, 131-135.

  4. 平内健一,片山郁夫(2010)マントルウェッジ条件下での蛇紋岩の流動特性に関する実験的研究,月刊地球, 32, 167-171.

  5. 片山郁夫(2010)沈み込み帯での地震波異方性とかんらん石の格子選択配向,岩石鉱物科学, 39 12-18.

  6. 片山郁夫(2008)かんらん石格子選択配向の実験的研究と沈み込み帯での地震波異方性,月刊地球, 30, 2-7.

  7. 片山郁夫,中嶋悟,丸山茂徳(2003)超高圧変成岩から読み取る沈み込み帯深部での水の存在,月刊地球, 25, 262-265.

  8. 太田努,寺林優,片山郁夫(2003)三波川超高圧変成帯仮説,月刊地球, 25, 227-235.

 

Books and others

  1. 木下正高(監訳),安藤亮輔,岩森光,沖野郷子,片山郁夫,加納靖之,川田佳史,木下正高,坂口有人,田中愛幸,中西正男,西山竜一,山野誠,吉田晶樹(訳)(2020)ジオダイナミクス 原著第3版,Donald Turcotte,Gerald Schubert 著,632ページ,共立出版

  2. 片山郁夫(2020)スロー地震の移動は流体の移動に律速される? 新学術領域「スロー地震学」ニュースレター

  3. 片山郁夫(2019)地球内部での水収支と海の持続的な存在,日本地球惑星科学連合ニュースレター,15, 4.

  4. 片山郁夫,畠山航平(2017)地球上で海はこれからもずっと存在するのだろうか? アカデミックジャーナル

  5. Katayama, I. (2016) The rheological significance of serpentinite on subduction zone dynamics. Elements, 12, 214.

  6. 片山郁夫(2015)地球内部を循環する水と地球ダイナミクス,「地球のしくみを理解する」176-191,広島大学出版

  7. 片山郁夫(2015)次世代エネルギーとしての地熱発電のポテンシャル(コラム),「地球のしくみを理解する」192-193,広島大学出版

  8. 片山郁夫(2010)蛇紋岩と沈み込み帯プロセス,月刊地球,32, 366号(編集).

  9. 片山郁夫(2004)超高圧鉱物の産状,地学雑誌, 113, 口絵.

  10. Parkinson, C.D., Katayama, I., Liou, J.G. and Maruyama, S. 2002. The diamond-bearing Kokchetav massif Kazakhstan. Universal Academic Press, p. 527 (co-editor).

bottom of page